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ABSTRACT
Within the past decade, a plethora of emerging multimedia appli-
cations and services has catalyzed the production of an enormous
quantity of multimedia data. This data-driven epoch has signif-
icantly propelled the trajectory of advanced research in various
facets of multimedia, including image/video content analysis, multi-
media search and recommendation systems, multimedia streaming,
and multimedia content delivery among others. In parallel to this,
the discipline of cognition, has embarked on a renewed trajectory
of progression, largely attributing its remarkable success to the
revolutionizing advent of machine learning methodologies. This
concurrent evolution of the two domains invariably presents an
intriguing question: What happens when multimedia meets cogni-
tion? To decipher this complex interplay, we delve into the concept
of Multimedia Cognition, which encapsulates the mutual influence
between multimedia and cognition. This exploration is primarily
directed toward three crucial aspects. Firstly, the way multimedia
and cognition influence each other, prompting theoretical develop-
ments towards multiple intelligence and cross-media intelligence.
More important, cognition reciprocates this interaction by infusing
novel perspectives and methodologies into multimedia research,
which can promote the interpretability, generalization ability, and
logical thinking of intelligent systems in open environments. Last
but not least, these two aspects form a loop in which multimedia
and cognition interactively enhance each other, bringing a new
research problem, so that the proper evaluation for multimedia
cognition in open environments is important. In this paper, we
discuss what and how efforts have been done in the literature and
share our insights on research directions that deserve further study
to produce potentially profound impacts on multimedia cognition
and evaluation in open environments.
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1 INTRODUCTION
Multimedia was first conceptualized as an innovative union of
multiple media formats in 1960s, which has been developed for
decades in both academia and industry [7, 28]. As it stands today,
Multimedia has come to be comprehensively delineated as an in-
teractive amalgamation of various electronic media, encompassing
video, image, audio, and text components [48]. This definition, as
currently encapsulated by the user-editable resource, Wikipedia,
captures its dynamic and multifaceted nature. Moreover, the field
of Artificial Intelligence (AI) emerged on the academic research
horizon in the 1950s [40], and since then, it has witnessed signifi-
cant advancements in a multitude of methodologies. Initially, these
two critical research domains followed distinct paths, operating
largely independently of each other. However, the proliferation of
diverse multimedia data types has propelled the development of
machine learning techniques, leading to the discovery of practical
models capable of processing a wide range of real-world multime-
dia information. Consequently, these advancements have paved
the way for the application of AI in various real-world scenarios.
Therefore, multimedia intelligence through exploring the mutual in-
fluences between multimedia and AI has been proposed and widely
studied [60].

Despite the notable success of multimedia intelligence, the ex-
isting literature ignores more realistic scenarios that the devel-
oped theories and approaches deployed in the wild, i.e., in the

https://orcid.org/0009-0002-4796-4205
https://orcid.org/0000-0003-3544-5563
https://orcid.org/0000-0002-0351-2939
https://orcid.org/0000-0001-9108-9618
https://orcid.org/0000-0002-8011-6147
https://orcid.org/0000-0003-1633-7575
https://orcid.org/0000-0003-2236-9290
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3607541.3616823
https://doi.org/10.1145/3607541.3616823


McGE ’23, October 29, 2023, Ottawa, ON, Canada Wei Feng et al.

open environments, leading to suboptimal performances and poor
interpretability, generalization ability, logical thinking ability for
intelligent systems in open environments [30, 31, 34, 57, 59].

More recently, cognition intelligence [37] as a research area
for human-like artificial intelligence (AI), has also significantly at-
tracted attention recently. It has seen the advent of multiple method-
ologies, inclusive but not limited to symbolic reasoning [9, 35],
probabilistic models in Bayesian networks [12, 42], biological inspi-
ration in the form of evolutionary algorithms [6], and more recently,
the deep learning approach, a human and neural inspired paradigm
neural-symbolic reasoning [14, 54] that has revolutionized the land-
scape of AI.

Multimedia cognition, which combines the strength of multi-
media and cognition, has become a promising research direction
and attracted an increasing number of interests from the commu-
nity, spanning over a variety of machine learning methodologies
and applications recently. On the one hand, the widespread avail-
ability of multimedia data has led to the emergence of numerous
multimodal applications, including audio-visual speech recogni-
tion [1, 50], image/video captioning [45, 53, 55], and visual ques-
tion answering [4, 17], etc. On the other hand, cognition research
focusing on studying perception and reasoning can enhance the
human-like reasoning characteristics in multimedia, resulting in
more inferrable multimedia [60]. Facing opportunities as well as
challenges, we believe it is the right time to review and promote
the studies of multimedia cognition approaches and their evalua-
tion, especially in real-world open environments. As a result, the
convergence of multimedia and cognition gives rise to multimedia
intelligence, creating a loop in which multimedia and cognition
interact with one another, thus generating mutual influence and en-
hancement, which can now be applied to a wide range of real-world
open-environment scenarios.

In this paper, we provide comprehensive and systematic descrip-
tions of multimedia cognition in open environments. Firstly, we
present some key theories of multimedia cognition in open envi-
ronments, including multiple intelligence theory, and cross-media
intelligence. Then, we summarize the existing methodologies into
three categories based on the effectiveness in multimedia cognition
tasks, i.e., open-environment disentanglement approaches for in-
terpretability, open-environment invariant learning approaches for
generalization ability, and open-environment reasoning approaches
for logical thinking ability, and elaborate representative approaches
in each category. Last but not least, we propose comprehensive mul-
timedia cognition evaluations specifically for open environments
as well as some experimental results, which could shed light on
further research of multimedia cognition.

2 MULTIMEDIA COGNITION THEORIES IN
OPEN ENVIRONMENTS

In this section, we provide a systematic summary of the multimedia
cognition theories, which mainly consist of two parts, i.e., multiple
intelligence theory and cross-media intelligence theory.

2.1 Multiple Intelligence Theory
In the field of Cognitive science and pedagogy, scientists have pro-
posed a variety of intelligence theories to describe and evaluate the

Figure 1: The framework of multiple intelligence
level of human intelligence, such as unified intelligence theory, dual
intelligence theory [25], ternary intelligence theory, and theory
of multiple intelligences. Different intelligence theories have their
own advantages and disadvantages as well as different scopes of
use. Among them, Theory of multiple intelligences, proposed by
Howard Earl Gardner in 1987, emphasizes that agents have mul-
tiple intelligences, which can more comprehensively evaluate the
development potential and intelligence level of agents [16]. In the
Theory of multiple intelligences shown in Figure 1, the intelligence
of agents includes eight different types [49]:

• Verbal–Linguistic Intelligence: Refers to people’s ability to
utilize, understand, and express language. This intelligence
is manifested in oral expression, written expression, and
language learning, along with understanding, rhetoric, and
speech.

• Musical Intelligence: Refers to people’s ability to understand,
create, and perform music. This intelligence is manifested in
music perception, memory, expression and creation.

• Logical/Mathematical Intelligence: Refers to people’s ability
to analyze, reason, and solve problems. This intelligence is
manifested in the learning and application of mathematics
and science, logical thinking, problem-solving, and reasoning
abilities.

• Visual/Spatial Intelligence: Refers to people’s ability to pro-
cess spatial information, image thinking, and imagination.
This intelligence is manifested in the abilities of art, archi-
tecture, design, image processing, and geography.

• Bodily/Kinesthetic Intelligence: Refers to people’s ability to
exercise, coordinate, and control their bodies. This intelli-
gence is manifested in sports, dance, handicrafts, etc.

• Intrapersonal Intelligence: Refers to people’s ability of under-
standing themselves, self-control, and self-reflection. This
intelligence is manifested in aspects such as self-awareness,
emotional management, goal setting, and self-evaluation.

• Interpersonal Intelligence: Refers to people’s ability in in-
terpersonal communication and understanding of others.
This intelligence is manifested in social skills, leadership,
empathy and cooperation ability.

• Naturalistic Intelligence: Refers to the ability to understand
and apply nature, including identifying and classifying living
and non-living organisms, understanding natural laws, and
mastering natural skills.
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Figure 2: The framework of cross-media intelligence: basis, concept, and evaluation. Each key concept in cross-media intelligence
involves somemultiple intelligence theories, which are denoted by the arrows. And these key concept in cross-media intelligence
is evaluated by some specific aspects, which are also represented by the arrows. Note that the arrows with the dashed line mean
Interaction Fusion Intelligence might involve partial but not total connected theories from multiple intelligence.

2.2 Cross-Media Intelligence
In the Theory of Multiple Intelligence, the different types of intel-
ligence above are not independent of each other, but interrelated
and intertwined, forming the cross-media intelligence shown in
Figure 2. Each agent also has strengths and weaknesses in different
types of intelligence. Corresponding to the field of cross-media
intelligence, we have summarized four types of intelligence that
cross-media intelligence should have, as follows:

• Language Understanding Intelligence: Refers to the ability
of an agent to process abstract language symbols (including
words, musical symbols, and other symbols). This intelli-
gence is manifested in Natural language processing [41],
context question dialogue, cross-modal visual question an-
swering [56] and other capabilities. The measurement of
language understanding intelligence includes the traditional
objective and subjective evaluation standards such as Per-
plexity and Crowd Sourcing. In this evaluation system, we
further emphasize the "consistency", "legitimacy" and "cred-
ibility" of language understanding and Smart lock under-
standing results. These indicators not only measure the ac-
curacy of language understanding results, but also examine
the rationality, legitimacy and credibility.

• Spatial Perception Intelligence: Spatial perception mainly ex-
amines the ability of intelligent agents to correctly perceive
semantics in images (video frames). This ability is closely
related to the natural observation intelligence and visual-
spatial intelligence of human intelligent agents, manifested
in the ability of cross-media intelligent models in computer
vision recognition, scene analysis, and other aspects. The
specific measurement indicator is the intersection and union
ratio between the attention region and the real region of the
model under non-strong supervision.

• Time Perception Intelligence: Time perception ability, is the
ability of an agent to understand context and causal order
above the spatial dimension. When asked about specific con-
cepts and problems, we hope that the agent can accurately
locate the specific contextual video frames involved in the
concepts and problems [27]. The specific measurement indi-
cator is the intersection and union ratio between the time
attention frame segments and the real frame segments of the
model under non-strong supervision.
Due to the fact that research on time perception and spatial
perception often takes place simultaneously, we generally
refer to both time perception intelligence and spatial per-
ception intelligence as spatiotemporal perception intelli-
gence.

• Combinatorial Reasoning Intelligence: Combinatorial rea-
soning intelligence is closely related to the logical and math-
ematical intelligence of human intelligence. We hope that
agents can combine different modal information and execute
reasoning according to the correct steps, thereby generating
the correct syntax or reasoning tree. The specific measure-
ment indicator is the consistency between the inference
sequence syntax tree generated by the model and the real
inference tree.

• Interaction Fusion Intelligence: Interaction fusion ability is
an important difference between cross-media intelligence
and other single-media intelligence. Cross-media intelligence
not only needs to understand single-mode information, but
also needs to align, interact, and fuse information from differ-
ent modes. We use the accuracy of the model in the typical
task of visual reasoning to measure the interaction fusion
ability of the model.
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Figure 3: Overview of methodology categorization of multimedia cognition in open environments

3 MULTIMEDIA COGNITION APPROACHES
IN OPEN ENVIRONMENTS

In this section, we discuss three main branches of techniques for
multimedia cognition in open environments, which includes open
environment disentanglement, invariant learning, and reasoning. In
general, disentangled multimedia representation learning can sepa-
rate the explanatory factors of variations behind the data, enhancing
interpretability. And invariant learning aims to capture invariant
relations between the entities and the labels, so that the generaliza-
tion ability in open environments can be largely improved. Finally,
reasoning techniques are also important for multimedia cognition,
since they can assess things rationally by applying logic based on
new or existing information when making a decision in open en-
vironments. Now we will describe these techniques in detail. The
framework of multimedia cognition methods in open environments
is shown in Figure 3.

3.1 Open-environment Disentanglement
The domain of disentangled representation learning has attracted
significant interest for representation learning in open environ-
ments, particularly within the scope of multimedia representation
learning [20, 47]. The primary objective of this discipline is to con-
struct representations capable of isolating the causal factors behind
data variations. It has been empirically demonstrated that these
types of representations exhibit greater resilience to intricate varia-
tions, leading to enhanced generalization capabilities and improved
robustness against adversarial attacks in open environments. In
addition, disentangled representations inherently possess superior
interpretability in open environments. Nevertheless, the task of
learning representations that can disentangle latent factors is a rel-
atively uncharted territory in the literature in terms of multimedia
cognition in open environments. This prominent gap in knowledge
underscores the need for further investigation into this crucial as-
pect of representation learning. Here we talk about two mainstream
methods including disentanglement with and without labels (i.e.,
supervised and unsupervised disentanglement).

3.1.1 Disentanglement with Labels. The genesis of a real-world
multimedia entity is typically a product of intricate interactions
involving numerous latent factors. Traditional deep learning al-
gorithms applied to multimedia data often overlook the intercon-
nected nature of these latent elements, leading to the derived rep-
resentations being both non-robust and challenging to interpret.
Despite this, the task of generating representations that disentangle
these latent factors remains largely uncharted territory within the

realm of deep learning literature, which can serve as the basis of
multimedia cognition. DisenGCN [38] introduces a novel approach
termed as the disentangled graph convolutional network, which
is designed to learn disentangled representations for structured
entities. The primary innovation is an ingenious neighborhood
routing mechanism. This system possesses the ability to dynami-
cally pinpoint the latent factor potentially entities responsible for
the creation of an edge between an entity and its adjacent instances.
In response, it allocates the neighboring node to a specific channel,
engineered to extract and convolute features that are peculiar to
the identified factor. The convergence properties of this routing
mechanism are not left to chance.

3.1.2 Disentanglement without Labels. Besides the supervisedmethod
above, the disentanglement without labels also receives much at-
tention. The recent surge in interest and impressive results of self-
supervised learning applications in open environments cannot go
unnoticed in the realm of multimedia representation learning. Nev-
ertheless, the creation of authentic-world multimedia entities is
often an outcome of intricate interactions among an abundance
of latent factors. Existing self-supervised learning approaches also
tend to take a holistic perspective, inadvertently disregarding the
intermingled nature of these latent elements. Consequently, this
oversight results in subpar learned representations for downstream
tasks, and their interpretability is considerably challenged in open
environments. In the work of [32], the authors unveil a novel
methodology dubbed Independence Promoted Disentangled Graph
Contrastive Learning (IDGCL). This pioneering approach capital-
izes on the self-supervision paradigm to learn disentangled rep-
resentations for structured entities. Specifically, the method first
discerns the latent factors intrinsic to the input graph and sub-
sequently generates its factorized representations. It presents a
unique factor-wise discrimination objective, implemented in the
style of contrastive learning. This design is instrumental in com-
pelling the factorized representations to independently encapsulate
the expressive information emanating from distinct latent factors.
To augment the independence amongst these representations, it
adopts the Hilbert-Schmidt Independence Criterion [46] to eradi-
cate dependencies that may exist among different representations.
This criterion is seamlessly integrated within the self-supervised
framework as a regularizer, thereby enhancing its efficiency. Fi-
nally, the disentanglement for the structured entities can largely
improve the effectiveness of the representation learning in open
environments.
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3.2 Open-environment Invariant Learning
In addition to the disentanglement techniques, invariant learning
is also an effective technique for multimedia cognition in open
environments. We mainly talk about invariant learning for static
and dynamic entities.

3.2.1 Invariant Learning for Static Entities. The capacity of mul-
timedia representation learning in delivering effective results is
clearly demonstrated when training and testing graph data are
drawn from an identical distribution. Nevertheless, under con-
ditions of distribution shifts, a significant proportion of existing
methodologies exhibit limitations in their ability to generalize. It’s
noteworthy that the concept of invariant learning [5], which de-
rives its foundational principles from causality, offers theoretical
assurances of generalization under distribution shifts that widely
exist in open environments, and has proven successful in practical
scenarios [2, 10, 18, 26]. However, its implementation in the context
of graph learning (GIL) [33], which is specifically designed to learn
generalized representations under conditions of distribution shifts.
The proposed methodology ingeniously captures invariant relation-
ships between predictive structural entity information and their
corresponding labels across different latent environments. This
is achieved by jointly optimizing the specially designed modules.
The robustness and generalization in open environments of the
proposed method are guaranteed by theoretical validations.

3.2.2 Invariant Learning for Dynamic Entities. Besides, multime-
dia entities can be changing in open environments, leading to the
research for dynamic entities. Taking the structural entities as ex-
amples, the prowess of dynamic graph neural networks in predic-
tion tasks has been showcased through their ability to leverage
both structural and temporal dynamics. However, an evident short-
fall of the current dynamic graph neural networks is their lack of
resilience against distribution shifts, which are the naturally occur-
ring phenomenon in dynamic graphs in open environments. This
limitation arises chiefly because the patterns exploited by DyGNNs
tend to be variants with respect to labels under distribution shifts.
Therefore, in the research work of [58], the authors pioneer an
approach aimed at managing spatiotemporal distribution shifts in
dynamic graphs. The approach revolves around the identification
and utilization of invariant patterns - structures and features with
predictive capabilities that remain stable despite distribution shifts.
It faces two primary challenges: firstly, the discovery of complex
variant and invariant spatiotemporal patterns in dynamic graphs,
which incorporate fluctuating graph structures and node features.
Secondly, the management of spatiotemporal distribution shifts
using the unearthed variant and invariant patterns.

To tackle these challenges, the authors introduce a novel model
Disentangled Intervention-based Dynamic graph Attention net-
works (DIDA). The proposed approach is adept at managing spa-
tiotemporal distribution shifts in dynamic graphs by unearthing and
fully exploiting invariant spatiotemporal patterns. This is achieved
in three stages. Firstly, a disentangled spatiotemporal attention
network is proposed to capture the variant and invariant patterns.
Secondly, a spatiotemporal intervention mechanism is designed to
generate multiple interventional distributions by sampling and re-
assembling variant patterns across neighborhoods and time stamps,

thereby negating the spurious influences of variant patterns. Lastly,
the authors introduce an invariance regularization term with the
aim tominimize prediction variances in the intervened distributions,
ensuring our model can generate predictions based on invariant
patterns with stable predictive abilities, and hence effectively man-
age distribution shifts. The robustness and generalization ability in
open environments of the proposed method is validated through
experiments on three real-world datasets and a synthetic dataset,
outperforming state-of-the-art baselines under distribution shifts.
This research is the first study of spatiotemporal distribution shifts
in dynamic graphs in open environments.

3.3 Open-environment Reasoning
Based on the tasks faced by Theory of multiple intelligences and
Cross-Media Intelligence in an open environment, different multi-
media reasoning models were proposed for solving specific prob-
lems, and corresponding theoretical systems were established.

3.3.1 VisualQuestion Answering. Visual QuestionAnswering (VQA)
aims to answer natural language questions of given images, and its
task is normally free-form and open-ended [4, 52]. In the open and
uncertain environment, artificial intelligence research faces chal-
lenges such as weak correspondence between separate texts and
non-textual objects, or difficulty in understanding and reasoning
based on the huge dimensions of corpora and image databases. In
specific scenarios, VQA tasks can be divided into related subtasks
such as TextVQA and VideoQA. For example, text visual question
answering (TextVQA) aims to answer questions related to textual
content present in the images [8]. To address TextVQA tasks, Liang
et al. [36] proposed a novel multi-modal contextual graph neural
network (MCG) model, which is able to capture the connections be-
tween visual characteristics of scene texts and non-textual objects
in images. After encoding scene texts into richer features contain-
ing textual, visual and positional features, this model represents the
visual relations between scene texts and non-textual objects using
a contextual graph neural network, which outperforms the base-
line approaches. For general scenarios and other specific scenarios,
Perceptual Visual Reasoning (PVR) with Knowledge Propagation
model and Dynamic Spatio-Temporal modular Network (DSTN)
model were also proposed for VQA tasks [29, 43].

3.3.2 Neural-symbolic learning. Neural-symbolic learning aims to
integrate the perceptual capabilities of neural perception and the
reasoning abilities of symbolic logic [15]. Logic symbols are Con-
structed language symbols used to express logic forms and logic
operations in logic. As a type of image symbol, they are widely
used in the field of logical reasoning. Although traditional symbolic
logical reasoning approaches have well-established theories and
diverse applications for managing discrete logic, they are not specif-
ically devised to handle semantic data, including raw images and
text. Early neural symbol learning focuses on combining these two
modules and optimizing them in isolation, which would be difficult
to obtain the global optimal results. Thus, Duan et al. proposed
DeepLogic [11], a joint learning model of neural perception and log-
ical reasoning, which contains a deep-logic module (DLM) [39] and
a deep&logic optimization (DLO) algorithm. Through this model,
the perception component offers guidance for acquiring logic rules,
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while the logic formulas obtained from the logical reasoning com-
ponent serve as supervision for neural perception learning. With-
out using pre-existing tools, this proposed DeepLogic framework
demonstrates superior performance over DNN-based baselines by
a considerable margin and surpasses other strong baselines.

4 MATHEMATICAL DEFINITION OF
EVALUATION SYSTEM

Specifically, the intelligent evaluation system includes five dimen-
sions tomeasure themodel’s cross-media intelligence ability, namely
language understanding ability, time perception ability, spatial per-
ception ability, combination reasoning ability, and interaction fu-
sion ability.

4.1 Language Understanding Intelligence
Language understanding intelligence includes three indicators,
namely consistency, validity, and plausibility. These three indi-
cators were first proposed by Husdon et al. in [24] to measure the
language understanding ability of intelligent agents, and many
subsequent works have continued to use these three indicators to
measure the language related ability of their models [13, 43, 44].

4.1.1 Consistency. Consistency is used to measure the consistency
between the answers generated by a model when facing different
problems. We calculate this indicator using the following method.

Firstly, for a set of question-answer pairs (𝑞, 𝑎), we define a
derived question-answer set 𝐸𝑞 = {(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑛, 𝑎𝑛)},
where any set of derived question-answer pairs (𝑞𝑖 , 𝑎1), 𝑖 = 1, 2, . . . , 𝑛
can be inferred from the original question-answer pair (𝑞, 𝑎). For
example, as shown in Figure 4, given the original question-answer
pairs: "Is there a red apple on the right side of the white plate?" -
"Yes", we can obtain the derived question-answer pairs: "Is the plate
on the left side of the apple?" - "Yes", "Is there a plate on the left side
of the red fruit?" - "Yes", etc. For each model that correctly answers
the question 𝑞 ∈ 𝑄 , we extend it to a derived question-answer set
𝐸𝑞 , we measure the model’s impact on the accuracy 𝐴𝑐𝑐𝑞 of the
questions contained in 𝐸𝑞 , we calculate the consistency 𝐶 using
the following formula:

𝐶 =

∑
𝑞∈𝑄 𝐴𝑐𝑐𝑞

|𝑄 | , (1)

where 𝑄 represents the set of correctly answered questions, and
|𝑄 | represents the size of the set.

Q: Is there a red apple on the right side of the 
white plate”? 
A: Yes.

Q: Is the plate on the left side of the apple? 
A: Yes.
Q: Is there a plate on the left side of the red fruit? 
A: Yes.
Q: Is there a plate on the right side of the red fruit? 
A: No.

Derived Questions - Answers

······
Derived Question - Answer Set E𝒒𝒒

Figure 4: Example of consistency. All derived question-
answer pairs are generated from the first original question-
answer pair. If a model with high consistency answers one
original question correctly, then it should not give wrong
answers to the derivative questions.

4.1.2 Validity. Validity is used to check whether a given answer is
within the scope of the question. For example, as shown in Figure 5,
answering a question about a certain color. For a question, if the
answer given by the model is within the scope of the question,
we believe that the answer to the question is legal, otherwise the
answer is illegal. We use the average legality rate as the numerical
value of this indicator, as shown in the following formula:

𝐶 =

∑
𝑞∈𝑄 𝑉𝑎𝑙𝑖𝑑𝑞

|𝑄 | , (2)

where 𝑉𝑎𝑙𝑖𝑑𝑞 represents whether the answer to question 𝑞 is legal,
𝑄 represents all sets of questions, and |𝑄 | represents the size of the
set.

Q: What color is the fruit next to the plate?

A: Red.

A: Blue.

A: Green

A: Yes.

A: Left.

A: Table

illegal examples legal examples

Figure 5: Example of validity. Regardless of right or wrong,
answers that meet the requirements of the question are con-
sidered legal, otherwise illegal.

4.1.3 Plausibility. Plausibility is used to measure the overall level
of model mastery of general knowledge. For example, as shown
in Figure 6, when asked about the color of an apple, if the model
provides an answer in red, green, or yellow, we believe the answer
is trustworthy, otherwise we believe the answer is untrustworthy.
We record the trusted answer set for question 𝑞 as 𝐴𝑞 , we calculate
whether the answer appears at least once in the entire dataset and
is related to the subject of the question. For question 𝑞, if the answer
given by the model is in the trusted answer set 𝐴𝑞 , we believe the
answer is credible, otherwise the answer is not credible. We use the
average credibility rate as the numerical value of this indicator, as
shown in the following formula:

𝐶 =

∑
𝑞∈𝑄 𝑃𝑙𝑎𝑢𝑠𝑒𝑞

|𝑄 | , (3)

where 𝑃𝑙𝑎𝑢𝑠𝑒𝑞 represents whether the answer to question 𝑞 is
trustworthy, 𝑄 represents all sets of questions, and |𝑄 | represents
the size of the set.

Q: What color is the apple next to the plate?

A: Red.

A: Green.

A: Yellow.

A: Purple.

A: Blue.

A: Brown.

Untrusted Example Trusted examples

Apple Color Answers in Training Datasets

frequency

Red Green Yellow

Figure 6: Example of plausibility. A question may have mul-
tiple answers, and all answers that have been statistically
correlated with the question subject in the dataset are con-
sidered trusted, while others are considered untrusted.
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4.2 Spatial Perception Intelligence
We hope that a model has the ability to correctly perceive semantic-
related local regions in images (or video frames). Anderson et al.
proposed in [3] that models need to have the ability to correctly
focus attention on semantically related local regions. In addition,
many works have incorporated attention mechanisms in model
design to make models more focused on fine-grained semantically
related regions [29, 43]. Specifically, as shown in Figure 7, when
asked the question "What color of clothing does a girl wear?", we
hope that the model can focus its attention on local areas related
to the "clothes the girl wears" [29]. For each problem, we record
the true attention value of the image area related to the problem as
𝑉𝐺 , and the attention value generated by the model as 𝑉 . We use
the Intersection over Union (IOU) of the two to measure the spatial
perception ability of the model [24]. We calculate the intersection
ratio 𝐼 using the following formula:

𝐼 =

∑𝑁
𝑖=0𝑉

𝐺
𝑖

×𝑉𝑖

𝑁
, (4)

where 𝑁 = 𝑤 × ℎ represents the number of pixels in the image,𝑤
represents the length of the image, and ℎ represents the width of
the image.

Q: What color clothes is the 
girl wearing in the picture?

Model 
attention

Figure 7: Example of spatial perception ability. We hope the
model focuses on where the question subject refers.

4.3 Time Perception Intelligence
We hope that a model has the ability to correctly perceive semantic-
related fragments in videos. Huang et al. proposed in [22] that the
model should focus its attention on semantically related frames,
and fine-grained attention should facilitate the model’s subsequent
logical reasoning. Specifically, as shown in Figure 8, when asked
"What color of clothing does the woman cooking in the video
wear?", we hope that the model can correctly locate the framewhere
the "woman cooking" exists. For certain semantics, we measure the
time perception ability of the model by detecting the intersection
over Union (IOU) between the frame where the semantics exist
and the frame where the semantics actually exist. We calculate the
intersection ratio 𝐼 using the following formula:

𝐼 =

∑𝑁
𝑖=0𝑉

𝐺
𝑖

×𝑉𝑖

𝑁
, (5)

where 𝑁 represents the number of frames in the video, 𝑉 ∈ R𝑁×1

represents the probability of the model detecting the existence of
semantic frames, and 𝑉𝐺 ∈ R𝑁×1represents the probability of the
frame where the semantic truly exists.

frames recording 
'The Woman Cooking'

Figure 8: Example of time perception ability. We hope the
model focuses on when (or which frames) the question sub-
ject refers to.

4.4 Combinatorial Reasoning Intelligence
For a combinatorial problem that requires multi-step reasoning,
we hope that the model can infer according to the correct reason-
ing steps. As shown in Figure 9 which provides a combinatorial
inference problem and its corresponding inference graph examples,
we hope that the model has the ability to generate correct syntax
trees or inference graphs [29, 43]. For a syntax tree, we can use the
Reverse Polish notation to express it as a sequence structure. There-
fore, we record the sequence syntax tree structure generated by
the model as 𝑇 = [𝑡0, 𝑡1, . . . , 𝑡𝑛], and the real sequence syntax tree
structure as 𝑇𝐺 = [𝑡𝐺0 , 𝑡

𝐺
1 , . . . , 𝑡

𝐺
𝑛 ]. We use the average sequence

accuracy index to measure the model’s combinatorial reasoning
ability. Among them, the sequence accuracy 𝑆𝑒𝑞𝐴𝑐𝑐𝑞 is the ability
to generate accurate syntax trees by calculating the model in the
test set, when 𝑇 = 𝑇𝐺 , we have 𝑡𝑖 = 𝑡𝐺

𝑖
,∀𝑖 ∈ [0, 1, . . . , 𝑛] . We

believe that the model produces an accurate syntax tree. At this
point, the indicator 𝑆 can be calculated using the following formula:

𝑆 =

∑
𝑞∈𝑄 𝑆𝑒𝑞𝐴𝑐𝑐𝑞

|𝑄 | , (6)
where 𝑄 represents all problem sets, and |𝑄 | represents the size of
the set.

Q: What object is the blue bird 
standing on in the picture?

Confirm the 
color of the 

bird.

Find object 
the bird 

standing on

Query name 
of 

the object
Logic diagram 
generation

Find
the bird

Figure 9: Example of combinatorial reasoning ability. We
hope the model can generate sequential logical inference
structures step by step for combinatorial reasoning.
4.5 Interaction Fusion Intelligence
The interactive fusion ability reflects the model’s ability to process
cross-modal information. In visual Q&A tasks, this ability mainly
reflects the model’s ability to generate correct answers, and we use
accuracy indicators to measure this ability [3, 21, 23, 29]. Calculate
using the following formula:

𝑆 =

∑
𝑞∈𝑄 𝐴𝑐𝑐𝑞

|𝑄 | , (7)
where 𝐴𝑐𝑐𝑞 represents whether the answer to question 𝑞 is correct,
𝑄 represents all sets of questions, and |𝑄 | represents the size of the
set.

5 EXPERIMENTS AND RESULTS
Based on themeasurement dimensionsmentioned above,We present
the results of existing models such as Perceptual Visual Reasoning
(PVR) with Knowledge Propagation model and Dynamic Spatio-
Temporal modular Network (DSTN) model, and their baseline mod-
els in Table 1.

5.1 Datasets
The detailed evaluations were conducted on the GQA dataset [24]
and the AGQA dataset [19], respectively, to measure the perfor-
mance of recently proposed models from the five measurement
dimensions mentioned above. The GQA dataset was proposed by
Hudson et al. in 2019 and is a real image Q&A dataset containing
massive inference questions [24]. This dataset was built with the
development of their strong question engine that creates diverse
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Measurement Dimensions Performance Representative Baselines Multimedia Cognition Approaches

Consistency 83.64 (N2NMNs [21]) 85.85 (PVR [29])
Language Understanding Ability Validity 96.29 (N2NMNs [21]) 96.47 (PVR [29])

Plausibility 84.57 (Bottom-Up [3]) 84.96 (PVR [29])

Time Perception Ability IOU 36.30(Random [43]) 59.70 (DSTN [43])

Spatial Perception Ability IOU 88.29 (MAC [23]) 97.44 (PVR [29])

Combinatorial Reasoning Ability Consistency - 99.84 (DSTN [43])

Interaction Fusion Ability Accuracy 55.44 (N2NMNs [21]) 57.33 (PVR [29])
Table 1: Experimental results. We report the ability results of existing cross-media cognitive methods in the evaluation system
on theMultimedia CognitionApproaches set, while their baselines’ results are on the Representative Baselines set. Measurement
indicators are labeled on the Measurement Dimensions and Performance set. ‘Random’ means the method which randomly
generates predictions for lack of available baselines.
reasoning questions through graph structures of the Visual Genome
scene. Correctly answering the questions in this dataset requires
the model to have good language understanding ability, spatial
perception ability, combined reasoning ability, and interactive fu-
sion ability. The AGQA dataset [19] was proposed by M Grunde
McLaughlin et al. in 2021 and is a real video Q&A dataset that
involves a large number of spatiotemporal reasoning problems. It
contains 192M unbalanced question-answer pairs for 9.6K videos
and a balanced subset of 3.9M question-answer pairs.
5.2 Perceptual Visual Reasoning
Novel module-based methods face challenges such as inadequate
explainability and logical inference capabilities. Undoubtedly, the
gap between these early investigations and actual human reasoning
is still substantial. To compensate for the lack of sufficient explain-
ability and logical inference in traditional VQA research, Li et al.
proposed amodule-based approach called the Perceptual Visual Rea-
soning (PVR) model for real-world visual reasoning [29]. The PVR
model addresses the real-world visual reasoning problem by break-
ing down a given question into multiple interconnected sub-tasks
and progressively addressing these sub-tasks. Firstly, a collection
of neural modules was designed for specific functionalities such as
localizing relevant visual regions, performing logical inference and
generating answers. Each module is capable of incorporating exter-
nal guidance information to specialize its functionality. Secondly, a
tree-based modular layout of hierarchical neural modules for rea-
soning was developed that integrates low-level visual perception
and high-level logic inference within a unified framework. Finally,
modules in the layout would be dynamically formed into a modular
neural network. After each module in the network received outputs
from its child modules and generated output to its parent module,
the final answer of the VQA task would be obtained from the top-
most module. These design choices promote an understandable and
compositional reasoning process, helping the PVR model produces
transparent, explainable intermediate results.

5.3 Dynamic Spatio-Temporal modular Network
As an extension of VQA, Video Question Answering (VideoQA)
aims to correctly answer questions given the related videos instead
of static images. Compared with VQA tasks, VideoQA requires more
reasoning operations due to the massive dataset on both temporal
and spatial scales [51]. In 2022, the novel dynamic spatio-temporal
modular network (DSTN) model was proposed [43], as the initial

approach using modular neural networks in VideoQA for inter-
pretable video reasoning in real-life situations. Specifically, the
proposed DSTN model first utilizes a hierarchical logic structure
to decompose the given question systematically into multiple sub-
tasks. These sub-tasks encompass essential concepts such as object,
subject, relation, location, action, temporal order, and duration.
Secondly, to address diverse sub-tasks, multiple modules would
be introduced with distinct functionalities that encompass tempo-
ral and spatial localization, logical reasoning, relation exploration,
and more. These modules are flexibly combined into a modular
network with a hierarchical logical structure, enabling enhanced
logical reasoning capabilities. In the end, the integrated modular
neural network concurrently processes textual features and visual
features in a progressive approach to produce the final answer of
the VideoQA task. Additionally, it carries out comprehensive ex-
periments to showcase the benefits of DSTN employing diverse
metrics and configurations, and analyzes the performance of dis-
tinct modules to validate their rationale and the overall model’s
interpretability.

Based on the results of the baseline model in VQA-related tasks,
we can summarize that in the multimedia cognition field, the PVR
model and DSTN model demonstrate leading levels of language
understanding ability, time perception ability, spatial perception
ability, combination reasoning ability, and interaction fusion ability.

6 CONCLUSION
In this paper, we reveal the convergence of multimedia and cogni-
tion in open environments. We present the novel concept of Multi-
media Cognition which explores the co-influence between multime-
dia and cognition via presenting the related theories, methodologies,
and practical evaluations. With the development of large language
models in the past few years, the interpretability, generalization
ability, and logical thinking of intelligent systems in open environ-
ments can be largely improved by the novel multimedia cognition
approaches, which would promote the further development of AI.
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